

Relevant Financial Relationship(s) None

Off-label therapy discussion

Methylprednisolone, plasma exchange,azathioprine, mycophenolate mofetil, mitoxantrone, rituximab, intravenous immune globulin, cyclophosphamide, and other immunological therapies for treatment of NMOSD

Agenda

Therapy

- Acute attack
- Prevention of attacks
- New agents in clinical trials
- DMDs to avoid
- Pregnancy recommendation
- MOG-related disease
- Symptomatic treatment

Immunology of NMO

Davoudi et al 2016

Acute attack treatment

Intravenous methylprednisolone

- 1g for 5 days
- Second course can be considered if PLEX is contraindicated
- Gradual tapering off over a 6–12 month period.

PLEX

- 5–7 exchanges every other day
- Considered as a first measure
 - Severe attack
 - Refractory or known to be resistant to IVMP
- IVIG
 - Very limited effect

(Jacob et al, 2012)

Kleiter et, Annals of Neurology2016

Shosha et al, Neurology 2018

Other - potential adjunctive acute therapies

- Cell-depleting therapies
 - Rituximab

(Kimbrough et al, 2012)

• Cyclophosphamide

(Greenberg, Thomas et al. 2007)

- Uncontrolled observational studies
 - Cetirizine (antihistamine) (*Zhang et al, 2013*)
 - Bevacizumab (anti-vascular endothelial growth factor (VEGF)) (Mealy et al, 2015)

Preventive Therapy

Medication *Azathioprine (+ prednisone)	Dose 2 - 3 mg/kg/ day (+ 30 mg/ day)	Route Oral	Schedule 1-2 daily doses (prednisone taper after 6 – 9 months)	Monitoring Initial: TPMT activity assay. Periodic: Mean corpuscular volume (MCV) increase of at least 5 points from baseline; monthly liver function tests for first 6 months, then twice yearly; maintain absolute neutrophil counts > 1000 cells/µL.	Treatment Change Considerations If MCV did not rise on initial dose, consider increase by $0.5 - 1$ mg/kg/day. Or consider increasing dose or duration of prednisone. <i>Switch to:</i> Rituximab or mycophenolate mofetil.	ARR/ EDSS 2.1 to 0.60 Bichuetti et al(2010) Stable EDSS
*Mycophenolate mofetil (+ prednisone)	1000 - 3000 mg/day (+ 30 mg/ day)	Oral	Two daily doses (prednisone taper after 6 months)	Absolute lymphocyte count (ALC) target of $1.0 - 1.5 \text{ k/}\mu\text{L}$; monthly liver function tests for first 6 months, then twice yearly	If ALC goal cannot be reached at maximum dose of 3000 mg/day, observe closely for relapse. <i>Switch to:</i> Rituximab	1.29 to 0.09 (Jacob, Matiello et al. 2009). Stable EDSS
*Rituximab	1000 mg for adults; 375 mg/m ² for children	IV	Two doses of 1000 mg 14 days apart or 4 weekly doses of 375 mg/m ² for children; each pair can be given routinely q6 months without monitoring of CD19 counts, or by following CD19+ cell counts and dosing as soon as it exceeds 1%.	Monthly CD19+ B cells starting immediately post- infusion; if CD19+ count exceeds 1% of total lymphocytes, re-dose with rituximab. If suppression of CD19+ count does not occur, consider switching to alternative. Monitor immunoglobulins yearly.	Relapses during first 3 weeks of initial dosing are not failures. Relapses when CD19+ count is greater than 1% are failures due to undertreatment. <i>Switch to:</i> Azathioprine or mycophenolate mofetil.	2.6 to 0.0 <i>Cree et al (2005)</i> Stable or improved EDSS

IG depletion with Rituximab

- Recurrent infections associated with Ig depletion
- Sinopulmonary and urinary tract
- Consider IgG(mg/dl) repletion with IVIG
 - < 150: replace
 - 150-300: usually replace, especially if clearly documented history of recurrent infections
 - 300-500: heavily dependent on infection history; may use responses to vaccines to judge
 - > 500: rarely needs replacement
- Dosage:
 - IVIG 400 mg/kg every 4 weeks to start
 - After 3 doses check IgG trough and adjust to get IgG >800-1000

Preventive Therapy

*Prednisone	15-30 mg	Oral	Daily dose; taper after 1 year	Blood sugar to avoid hyperglycemia, blood pressure; DEXA scans as appropriate for osteoporosis; vitamin D and calcium supplementation as needed; consider proton pump inhibitors for gastric protection	Prednisone monotherapy not recommended for long-term use beyond 1.5 years. <i>Switch to:</i> Azathioprine, mycophenolate or rituximab.	ARR/EDSS 1.48 to 0.49 (Watanabe, Misu et al. 2007 EDSS stable
Methotrexate	15 – 25 mg	Oral	Weekly	Check for liver toxicity every 3 months; recommend folate 1 mg supplementation; avoid non-steroidal anti- inflammatory drugs.	Switch to: Azathioprine, mycophenolate mofetil or rituximab	1.39 to 0.18 Minagar et al,(2000) EDSS stable
Mitoxantrone	12 mg/m ²	IV	Monthly ×6, followed by monthly maintenance dose of 6 mg/m ² . Total cumulative dose no greaterthan 120 mg/m ² .	Baseline and monthly echocardiogram to exclude patients and discontinue drug ifficit ventricular ejection fraction < 50%.	Only recommended as second line agent. The maximum cumulative dose is 140 mg/m ² . <i>Switch to:</i> Azathioprine, mycophenolate mofetil or rituximab	2.8 to 0.7 Weinstock- Guttman et al (2006). EDSS 5.8 to 4.4

Emerging MMO Therapies

Emerging NMO Therapies

Middle East North Africa

Treatment and Research in Multiple Sclerosis

hittee for

Table 2 | Current therapeutic trials in NMO

Company	Intervention	Mode of action	Type of trial	Recruitment	Purpose of trial
Alexion	Eculizumab (Soliris®)	Inhibits C5	Phase III	Not yet started	Long-term safety and efficacy for relapse rate reduction in AQP4-IgG ⁺ NMO
Nihon	Intravenous immunoglobulin (NPB-01) combined with steroids	Multiple	Phase II	Recruiting	Safety and efficacy in AQP4-IgG ⁺ NMO
Mayo Clinic	Plasma exchange	lgG depletion	Phase I	Recruiting	Feasibility, tolerability, safety and preliminary efficacy as maintenance therapy in NMO
Viropharma	C1inh (Cinryze®) as an add-on therapy	C1 inhibition	Phase I	Completed	Tolerability, safety and preliminary efficacy in acute NMO/NMOSD
Genentech	Bevacizumab (Avastin®) as add-on therapy	Inhibits VEGF	Phase II	Not yet started	Tolerability, safety and preliminary efficacy in acute NMO/NMOSD
Chugai	SA237	Anti-IL-6 receptor	Phase III	Not yet started	Safety, efficacy; pharmacodynamic, pharmacokinetic and immunogenic profiles in NMO/NMOSD
ONO	Sivelestat (Elaspol®) combined with methylprednisolone	Anti- neutrophil	Phase I, II	Recruiting	Safety and efficacy in acute NMO
Genentech	Tocilizumab (Actemra®, Toactemra®)	Anti-IL-6 receptor	Phase I, II	Completed	Safety and efficacy in intractable NMO; exploration of mechanisms of action

Abbreviations: AQP4, aquaporin-4; AQP4-IgG⁺, AQP4-IgG-seropositive; C, complement protein; NMO, neuromyelitis optica; NMOSD, NMO spectrum disorder; VEGF, vascular endothelial growth factor.

M. C. Papadopoulos, Rev Neurol 2014

Table 3 Compounds in the pipeline Compound Target molecule Mechanism of action Anti-CD1934,118 B-cell surface marker Depletion of naive and memory B cells, plasmablasts, and some plasma cells Anti-IL-1754,183 Cytokine Blocks IL-17 signal transduction Aquaporumab¹⁴⁴ AQP4 Binds to AQP4 on CNS astrocytes and blocks AQP4-IgG binding IdeS¹⁵³ AQP4-IgG Cleaves circulating AQP4-IgG EndoS¹⁵² AQP4-IgG Deglycosylates AQP4-IgG to eliminate CDC and ADCC function Small-molecule blockers¹⁴⁵ AQP4-IgG Competitive inhibition of AQP4-IgG binding Peptoid inhibitors¹⁸⁴ AQP4-IgG Competitive inhibition of AQP4-IgG binding

Abbreviations: ADCC, antibody-dependent cellular cytotoxicity; AQP4, aquaporin-4; CDC, complement-dependent cytotoxicity; NMO, neuromyelitis optica.

M. C. Papadopoulos, Rev Neurol 2014

Drugs to avoid

- INF
- Natalizumab
- DMF
- Alemtuzumab
- Fingolimod

(Shimuzu et al, 2010, Okada et al 2010)

(Kleiter et al, 2012)

(*Popiel et al*, 2018)

(Gelfland, et al 2014)

(*Min et al*, 2012)

Pregnancy recommendation

- Acute relapse
 - IVMP: avoid repeated courses.
 - PLEX:
 - IVIG: risk of low birth weight/ monthly doses as maintainace

Shosha et al, MSJ 2018

Azathioprine:

- Continue; alone or with small dose of steroid.
- Leukocyte evaluation
 - Leukocyte count monitored every 1-2 weeks
 - Halve dose at 32 week, if leukocyte $< 8.6 \times 10(9)/1$) so as not to affect fetal haemopoiesis

Rituximab:

- B-cell depletion persists approximately 9-12 months
- For planned pregnancy:
 - Two doses of 1000 mg IV separated by 2 weeks
 - Consider single 1000 mg IV dose if B cell already depleted
- For unintended pregnancies:
 - Consider remaining duration of effect
 - Decide based on recent NMOSD activity

Shosha et al, MSJ 2018

Pregnancy recommendation

- Immunosuppresive therapy
 - MMF: stop it 6 weeks prior conception
 - use reliable contraceptive methods
 - MTX: stop it 3 months prior conception

Shosha et al, MSJ 2018

MOG-Associated Disease

- Corticosteroid and PLEX-responsive
 - IVMP followed by oral corticosteroids
 - PLEX for more severe/refractory attacks
- Prolonged corticosteroid treatment after first attack associated with lower relapse risk
 - Prednisone >20mg/d
 - Continue treatment for 3-6 months
- Who requires treatment?
 - Established relapsing disease
 - Persistent MOG-IgG antibodies beyond 6 months?

Symptomatic treatment

- Spasticity
- Urinary retention/ incontinence
- Fatigue
- Depression
- Cognitive Dysfunction
- Neuropathic pain

Factors affecting treatment of relapse

- Age less than 40
- IVMP vs PLEX
- Shorter disease duration
- Complete vs partial remission

Can we stop IS?

Prolonged Remission in Neuromyelitis Optica Following Cessation of Rituximab Treatment

Journal of Child Neurology 2015, Vol. 30(10) 1366-1370 © The Author(s) 2014 Reprints and permission: sagepub.com/journalsPermissions.nav DOI: 10.1177/0883073814553974 jon.sagepub.com

Kelley Weinfurtner, BA¹, Jennifer Graves, MD, PhD², Jayne Ness, MD³, Lauren Krupp, MD⁴, Maria Milazzo, RN, MS^{4,5}, and Emmanuelle Waubant, MD, PhD^{2,6}

Abstract

Neuromyelitis optica is an autoimmune disease characterized by acute episodes of transverse myelitis and optic neuritis. Several small, open-label studies suggest rituximab, a monoclonal antibody against CD20, prevents relapses in neuromyelitis optica; however, there is little consensus on timing or duration of treatment. Here we report four patients with severe relapsing neuromyelitis optica who were stabilized on rituximab and, after discontinuing treatment, continued to experience prolonged remission of their disease. Remission ranged from 4.5 to 10.5 years total, including 3 to 9 years off all therapies. The patients had sustained clinical responses despite normal B-lymphocyte levels and, in at least 2 patients, continued seropositivity for aquaporin-4 antibodies. These cases suggest that rituximab may induce prolonged remission in certain neuromyelitis optica patients, and they highlight the need for further elucidation of rituximab's mechanism in neuromyelitis optica.

GA

- Effective in two patients
 - [Bergamaschi et al. 2003].
 - Gartzen et al.2007].

Received: 21 December 2016 Accepted: 15 March 2017 Published online: 11 April 2017

OPEN Efficacy and safety of tacrolimus treatment for neuromyelitis optica spectrum disorder

Bo Chen¹, Qian Wu¹, Gaotan Ke² & Bitao Bu¹

Neuromyelitis optica spectrum disorder (NMOSD) is a severe inflammatory autoimmune disease that mainly involves the optic nerves and spinal cord, causing blindness and paralysis. Although some immunosuppressants such as rituximab and azathioprine have proven to be effective in relapse prevention, the high costs or intolerable adverse events preclude their wide application. Thus, we have conducted a retrospective study in 25 NMOSD patients who were treated with tacrolimus, an immunosuppressant with high efficacy and good tolerance in other autoimmune diseases, to assess its efficacy and safety in NMOSD treatment during the last five years (2011–2016). The results revealed that tacrolimus could reduce the relapse rate by 86.2% and improve the Expanded Disability Status Scale (EDSS) scores (4.5 vs 2.3; P < 0.001) significantly. Relapses in tacrolimus treatment were associated with serum titers of aquaporin 4 antibody (AQP4-IgG) (P = 0.028). Further Cox proportional analysis demonstrated that patients with high titers of AQP4-IgG (>1:64) had a significantly higher risk of relapse than those with low titers after tacrolimus therapy (HR:5.665; Cl₉₅: 1.012–31.705; P = 0.048). Tacrolimus tended to be superior to azathioprine (29 patients) in terms of efficacy and safety during the same period. Our study suggests that tacrolimus may be another promising immunosuppressant for NMOSD.

Mitoxantrone

• N = 20

- Reduced ARR by 75%
- 50% relapse-free
- Clinical stability
- Preferentially affected CD27+CD19+ memory B cells

Kim et al, Arch Neurol 2010

Methotrexate

- Retrospective (n=14)
- Only 3/14 as 1st line
- 11/14 also continued prednisolone
- Median Rx 21.3 mos
- Median ARR reduced from 1.39 to 0.18 (p<0.005)
- Cautions: hepatotoxicity, pneumonitis, cytopenias, need for folic acid, contraindicated in pregnancy

Kitley et al, JNNP 2013

Autologous HSCT

ecent reports of hematopoietic stem cell transplant (HSCT) for treatment of refractory neuromyelitis optica						
Author	Patients, n (sex)	Median age, years	Type of HSCT	Clinical outcome	Anti-AQP4-Antibodies post HSCT	
Greco et al. 2014 [7]	16 (13F/3M)	37	Autologous	Relapse in 13/16 patients (median follow up 47 months) Three patients treatment and relapse free	Only measured in eight patients at follo up, all positive and all of whom relapsed	
Greco et al. 2014 [11]	2 (1F/1M)	29	Allogeneic	Relapse free and treatment free (36 and 48 months)	Negative	

Drugs umask NMOSD

- Navolumab in non-small cell lung CA
- Ipilimumab in metastatic melanoma

